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Abstract

Forest ecosystems are critically important for biodiversity, carbon storage, climate regulation, and socio-economic
services. This review examines the transformative role of technological infrastructure in sustainable forest
management. Focusing on innovation and methodology, it evaluates the applications of technologies such as remote
sensing, GIS, UAVs, 10T, artificial intelligence, and digital twins in forest engineerng applications, forest inventory,
fire management, biodiversity monitoring, and decision support systems through a systematic literature review. The
results reveal that these technologies enable a transition to a data-driven, proactive, and effective management
paradigm. However, significant challenges such as cost, the digital divide, human resources, and ethical limitations
persist. The article provides strategic recommendations for policymakers, researchers, and forest managers and
discusses the contributions of technology-integrated forest engineering and management to socio-economic and
ecological sustainability.

Keywords: Forest management, remote sensing, Geographic Information Systems (GIS), UAV, IoT, artificial
intelligence, digital twin, sustainable management, ecosystem services, forest policy.

1. Introduction

Forest ecosystems are critical for biodiversity, carbon storage, climate regulation (Bonan, 2008), soil and
water cycles, and provide economic and cultural benefits (Lal, 2008). Sustainable forest management
requires moving beyond classical timber production-focused approaches to balance ecosystem services and
preserve ecological integrity (FAO, 2020). Increasing population, climate change, rapid urbanization, and
natural disasters are making the challenges faced by forest engineering and management even more complex
(Seidl et al., 2017).

Rapid developments in information technologies have enabled data-driven and real-time decision-
making processes in forest ecosystem management. This technological innovation not only increases
operational efficiency but also profoundly affects socio-economic dimensions such as the assessment of
ecosystem services, rural development, and shaping forest policies. Satellite imagery, UAVs, LiDAR
systems, Geographic Information Systems (GIS), sensor networks, Internet of Things (IoT), big data
analytics, artificial intelligence and digital twin applications offer revolutionary solutions for monitoring,
assessing, and managing forests (Asner, 2013; Pettorelli et al., 2018; Reichstein et al., 2019; Abad-Segura
et al.,2020 ). These technologies enable the collection of high-resolution data over large areas, rapid
detection of ecosystem changes, and development of early warning systems for natural disasters (Paneque-
Galvez et al., 2014; Linares & Ni-Meister, 2024).

However, the implementation of technological infrastructure faces challenges such as cost, data
standardization, lack of human resources, and legal/ethical limitations (Maxwell et al., 2018; Stone et al.,

26


mailto:sgumus@ktu.edu.tr
https://orcid.org/0000-0002-6942-160X

The Role of Technological Infrastructure in Forest Engineering and
S.Gumus Ecosystem Management: Current Trends and Future Perspectives

2016). Therefore, addressing the opportunities and limitations offered by technological infastructure with a
holistic approach is crucial for shaping future strategies.

The aim of this review is to comprehensively present the current status, application areas, benefits,
and limitations of technological infrastructure in forest engineering and ecosystem management; and to
provide a guiding assessment of the intersection points of technological progress with forest management
policies and sustainable development goals in the context of future trends and policy/application
recommendations. This article aims to systematically classify these technological components and detail the
synergies and emerging paradigms arising from their integration into forest management practice.

2. Technological Infrastructure Components

Technological infrastructure plays a critical role in monitoring ecosystem dynamics, analyzing, and making
sustainable management decisions in forest engineering aplications and ecosystem management. This
infrastructure has a multidimensional structure encompassing hardware, software, network communication
technologies, and information management systems.

2.1. Remote Sensing Technologies

Remote sensing (RS) systems are widely used to monitor large-scale and temporal changes in forest
ecosystems. Satellite time series analyses play a critical role in detecting, mapping, and understanding the
geographical distribution of forest degradation (logging, fire) (Asner, 2013). High-resolution satellite
imagery and LiDAR data provide critical data for estimating forest structure, biomass, and carbon stocks
(Pettorelli et al., 2018). Unmanned aerial vehicles (UAVs) enable obtaining detailed data on a smaller scale

and are used particularly in assessing young forests, tree diseases, and post-fire areas (Paneque-Galvez et
al., 2014).

2.2. Geographic Information Systems (GIS)

GIS is a fundamental software infrastructure for spatial data management, analysis, and visualization.
Numerous applications such as forest road planning, habitat integrity analysis, and erosion risk assessment
are GIS-based. Thanks to GIS's powerful data integration capacity, data from different sources (satellite
data, meteorological stations, field measurements) can be combined on a single platform and used
effectively in decision-making processes in many areas of forest ecosystem management (Kerr & Ostrovsky,
2003).

2.3. Sensors, Monitoring Systems and Internet of Things (IoT)

Ground-based sensors are particularly important for monitoring microclimate, soil moisture, flow dynamics,
and biotic-abiotic stress factors, providing foundational data for integrated forest monitoring systems. Long-
term ecological research networks in forest ecosystems, such as FLUXNET, supply critical data on carbon
cycling and energy flows. These datasets support advanced modeling of forest ecosystem processes
(Baldocchi et al., 2001). Sensor-based infrastructures, when integrated with IoT, enable real-time and
predictive detection of fire events, pest outbreaks, and drought effects, offering critical applications for
forest management (Linares & Ni-Meister, 2024; Ali et al., 2025).

2.4. Big Data and Artificial Intelligence Applications

The increasing volume and complexity of forest-related data in recent years have rendered traditional
analysis methods insufficient. Big data analytics and Al-based algorithms have become essential tools for
understanding forest dynamics, modeling biodiversity, and predicting complex processes such as fire risk
(Reichstein et al., 2019). Machine learning algorithms—such as Random Forest, Support Vector Machines,
and Deep Learning—have proven highly successful in land cover classification, fire risk prediction, and
habitat modeling (Maxwell et al., 2018).

2.5. Technology Integration and Digital Twins
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The real power of technological components comes from their integrated operation. For example, remote
sensing data obtained from UAVs and satellites are processed on GIS platforms and analyzed with Al
algorithms to transform into meaningful information. The most advanced level of this integration is the
'digital twin' concept. A digital twin is a dynamic virtual model of a physical forest ecosystem, fed with real-
time data (Fuller et al., 2020). This model enables managers to predict potential outcomes of events such as
fire, disease outbreaks, or different harvesting scenarios and take proactive interventions (Buonocore et al.,
2022). The concept of the digital twin, still emerging in forestry, is being explored as a way to replicate and
simulate dynamic forest systems. Through big data analytics and Al integration, digital twins can enhance
scenario modeling for sustainable forest management.

3. METHODOLOGY

This study is a review based on systematic literature review and thematic analysis approaches (Moher et al.,
2009). The study was conducted in three main stages:

3.1. Literature Review

» Databases: Web of Science, Scopus, ScienceDirect, SpringerLink, and Google Scholar were used
(Gurevitch et al., 2018).

+ Keywords: “forest engineering”, "forest management”, "forest ecosystem management",

nn

"technological infrastructure”, "remote sensing", "GIS", "UAV", "loT", "artificial intelligence", "big data",
"digital twin".

* Time range: Studies published between 2000-2025 were primarily evaluated.

» Language: Peer-reviewed articles, reports, and conference proceedings published in English and
Turkish were included in the review (FAO, 2020).

3.2. Selection Criteria

* Inclusion criteria: Being directly related to forest ecosystem management; being technological
infrastructure-focused; providing empirical, conceptual, or methodological contribution (Gurevitch et al.,
2018).

* Exclusion criteria: Studies not directly related to the topic; those with insufficient methodological
description; duplicate content.

3.3. Analysis Process

* The screening process was conducted within the framework of the PRISMA approach (Moher et
al., 2009).

* Preliminary screening: 350 studies were identified, reduced to 120 studies through title and
abstract review, and after full-text review, 48 studies were analyzed in detail.

* Studies were divided into five main categories using thematic coding method:

Data collection and monitoring technologies (Asner, 2013; Paneque-Galvez et al., 2014; Ecke et al.,
2022)

Data processing and analysis methods (Reichstein et al., 2019; Maxwell et al., 2018)

Application areas (forest inventory, fire risk, biodiversity) (Pettorelli et al., 2018; Kilic et al. 2006;
Akgcay et al., 2023)

Benefits and contributions (Abad-Segura et al., 2022; Gumus et al. (2008))
Challenges and limitations (Maxwell et al., 2018; Stone et al., 2016; Diktas-Bulut et al., 2025)
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4. CURRENT TRENDS AND APPLICATION AREAS
The use of technological infrastructure in forest ecosystems is increasingly diversifying and intensifying.
4.1. Forest Inventory and Biomass Estimation

Remote sensing and LiDAR data have become cornerstone technologies for forest inventory and the
estimation of biomass and carbon stocks (Pettorelli et al., 2018). The deployment of Unmanned Aerial
Vehicles (UAVs) and high-resolution satellite imagery has further enhanced the accuracy of monitoring
young forest stands and calculating timber volume (Paneque-Galvez et al., 2014; Ecke et al., 2022). These
data integrated with GIS play a critical role in many areas of forest ecosystem management, including spatial
distribution analyses. The efficacy of these methodologies is substantiated by a growing body of research
in Tlirkiye, where their application has advanced significantly since the early 2000s. For instance, pioneering
work by Kilic et al. (2006) utilized Landsat data to establish a foundation for temporal change detection in
Turkish forest ecosystems, a trajectory continued by contemporary studies. Akcay et al. (2023) effectively
leveraged multi-temporal Sentinel-2 imagery for precise biomass estimation in Northern Anatolia,
demonstrating the enhanced capabilities of recent satellite platforms. Similarly, Vatandaslar & Zeybek
(2020) applied handheld laser scanning technology for detailed inventory purposes in northeastern Turkey.
Collectively, these studies underscore the effective integration and evolution of remote sensing, UAV, and
GIS technologies for comprehensive forest structural assessment, inventory, and carbon stock modeling.

4.2. Fire and Risk Management

The real-time monitoring of critical environmental variables such as humidity, temperature, soil moisture,
wind speed, and precipitation is now enabled by Internet of Things (IoT) networks and sensor systems,
forming the backbone of modern fire early warning systems. These measurements are vital for the early
detection of fire risk, with their effectiveness well-documented in global research (Jin & Goulden, 2014).
The integration of loT-based sensor networks and real-time data acquisition systems into forest management
practices has become increasingly widespread in Tiirkiye, providing the foundational data for developing
sophisticated predictive models (Ali et al., 2025).

The data from these systems feed into big data analytics and artificial intelligence-based algorithms,
which are becoming increasingly important for modeling complex processes such as fire risk, propagation,
and the preparation of sophisticated risk maps (Reichstein et al., 2019). The considerable potential of Al-
based models for early fire detection is well-corroborated. Machine learning and deep learning approaches
are now being effectively applied across a spectrum of forestry applications, including forest fire risk
mapping and early fire prediction (Yildirim et al., 2023; Fidanboy et al., 2023). In Tiirkiye, research in this
area is particularly advanced and multidisciplinary. A pertinent example is the work of Baybas et al. (2024),
who applied machine learning algorithms to environmental, terrain, and land cover data to predict forest fire
risk in the Mediterranean region, finding that the Random Forest algorithm yielded the most accurate
predictions.

This focus on predictive modeling is complemented by post-fire analysis using satellite imagery, as
seen in the work of Colak & Sunar (2018), who monitored fire-affected areas in izmir using Sentinel-2 and
Landsat data. Further contributing to this field, Iban & Sekertekin (2022) applied machine learning for
wildfire susceptibility mapping in Adana and Mersin.

4.3. Biodiversity and Habitat Monitoring

The precision with which species diversity, tree health, and habitat structure can be monitored has been
fundamentally transformed by remote sensing, Unmanned Aerial Vehicles (UAVs), and hyperspectral or
multispectral sensors (Turner et al., 2015; Maxwell et al., 2018). The synergy created by combining these
technological approaches with artificial intelligence (Al) and Geographic Information Systems (GIS) has
proven particularly powerful, significantly enhancing predictive habitat modeling and thereby providing
robust support for conservation initiatives and biodiversity protection.
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A key development in this domain has been the adoption of UAV-based photogrammetry, which
provides a cost-effective and high-resolution alternative to traditional field surveys. The deployment of
UAVs equipped with multispectral and thermal sensors has led to their successful application in critical
areas such as tree health assessment and detailed habitat mapping (Ecke et al., 2022).

Beyond health and habitat assessments, remote sensing data are extensively used for classification
tasks. Machine learning algorithms such as support vector machines and random forest are effectively
employed to classify land cover and distinguish between tree species with high accuracy (Kaya & Dengiz,
2024). This capability is crucial for tracking changes in species composition, monitoring ecosystem health,
and informing targeted conservation strategies.

4.4. Sustainable Management and Decision Support Systems

Geographic Information Systems (GIS)-based decision support systems are pivotal for sustainable forest
management, as they facilitate decision-making by simulating different management scenarios and
integrating multi-source data (Diaz-Balteiro & Romero, 2008; Kerr & Ostrovsky, 2003). Furthermore, big
data analytics and artificial intelligence (AI) help balance ecosystem services with economic outputs,
thereby increasing the accuracy and effectiveness of forest management plans (Reichstein et al., 2019).

In Tiirkiye, GIS and remote sensing applications in forest engineering have been effectively applied
to critical areas such as forest road planning, terrain stability, and environmental impact assessment. The
work of Gumus et al. (2008), Hacisalihoglu et al. (2019) and Giimiis (2021) exemplifies this, integrating
GIS with digital terrain models to assess forest road locations, examine the effects of road construction on
soil erosion and hydro-physical properties, and highlight the role of spatial analysis in minimizing
environmental risks. Complementing this, Akay and colleagues (2008, 2016) utilized LiDAR and GIS for
forest structure assessment, fire behavior modeling, and access zone analysis. Collectively, these studies
demonstrate the successful integration of spatial modeling and remote sensing into sustainable forest road
design and terrain-based risk assessment.

Beyond these applications, recent research is further advancing the digitalization of forest
engineering. Studies now emphasize the use of geophysical sensors, such as seismic refraction and electrical
resistivity methods, to enhance the precision of subsurface terrain analysis. The integration of this sensor-
based data into planning and design processes represents a significant step forward in creating
comprehensive, data-driven decision support systems for sustainable forest management (Diktas-Bulut et
al., 2025).

4.5. Ecosystem Services Assessment and Decision Support Systems

Technological advancements are increasingly being harnessed to support the quantitative assessment of
ecosystem services, including carbon sequestration, water provision, and recreational value. The use of big
data, Al, and GIS facilitates predictive scenario modeling that integrates complex socio-economic and
ecological data (Diaz-Balteiro & Romero, 2008). A cutting-edge development in this sphere is the concept
of digital twins, which utilize real-time data streams from sensors, UAVs, and satellites to create dynamic
virtual replicas of forest ecosystems. These digital twins enable the simulation of management interventions,
climate impacts, or fire scenarios, thereby enhancing proactive and evidence-based decision-making (Fuller
et al., 2020; Buonocore et al., 2022). Complementing traditional GIS and remote sensing approaches, these
studies highlight how big data and Al technologies enhance forest monitoring, inventory, and risk prediction.

4.6. Summary of Current Trends and Application Areas

Technological infrastructure enables proactive, data-driven forest management. Remote sensing and UAVs
improve inventory and monitoring; IoT networks allow early detection of threats; GIS and Al enable
predictive modeling and scenario analysis; digital twins integrate multiple data streams for strategic
decision-making. Challenges include cost, human resources, standardization, and algorithmic transparency
(Table 1).
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Table 1. Current Trends and Application Areas of Technological Infrastructure in Forest Management

Technology

Remote Sensing

Application Area

Forest inventory,

Benefits Challenges

High-resolution, large-scale data;

. . Cost; cloud coverage; data
improved accuracy; monitoring of

(Satellite, LIDAR) biomass/carbon estimation structural changes processing requirements
Young forests, p(')st-ﬁre Detailed small-scale mapping; rapid Limited flight time; regulatory
UAV / Drones assessment, species . .o .
o deployment; flexible monitoring restrictions; weather dependency
monitoring
Spa.tlal planmpg, crosion risk, Integration of multi-source data; Data standardization; software
GIS habitat analysis, decision

IoT / Sensor Networks

support

Microclimate, soil moisture,
fire/pest detection

spatial analysis; scenario modeling training needed

Real-time monitoring; early

. Installation cost; maintenance;
warning systems; ecosystem process

network connectivity

tracking

Big Data & Al Fire risk prediction, habitat Predictive analytics; pattern . )

R . . . e .. Algorithm transparency; data
(Machine Learning, modeling, vegetation recognition; improved decision- . .
. . . : quality; model bias
Deep Learning) classification making
. . . Proactive decision-making; High complexity; real-time data
- . Simulating scenarios for . . . .
Digital Twin integrated ecosystem modeling; requirement; computational

management, climate, risk

demand

strategic planning

Source: Compiled by the author based on literature review (2024).

5.DiSCUSSION

This review demonstrates that technological infrastructure has transformed forest management from a
reactive discipline into a proactive, data-driven, and predictive science. The findings are consistent with the
existing literature indicating that the integration of remote sensing and Al, in particular, exponentially
increases the scale, speed, and accuracy of data collection compared to traditional field studies (Christin et
al., 2019; Reichstein et al., 2019; Zulfigar et al., 2021). Recent research from Tiirkiye further supports these
findings, showing successful applications of UAV-based monitoring (Eker et al., 2021), GIS-integrated risk
assessment (Gumus et al. (2008), and IoT-based real-time data acquisition systems (Tagarakis et al., 2024)
in forest management contexts.

However, this digitalization process also brings with it a significant paradigm shift. Forest
management now requires not only ecological knowledge but also the ability to process big data, understand
algorithms, and manage cyber-physical systems. This situation urgently necessitates the revision of forest
engineering education curricula (Burleigh & Jénsson 2025).

Furthermore, as dependence on technology increases, 'data quality' and 'algorithmic transparency'
become critically important. A machine learning model trained with low-quality data can lead to erroneous
management decisions. Similarly, the inability to understand the logic behind decisions made by deep
learning models operating as 'black boxes' can undermine managers' trust in these systems (Rudin, 2019).
Therefore, explainability in Al applications (explainable Al - XAI) should be one of the focal points of
future research (Chinnaraju 2025).

6. CHALLENGES AND LIMITATIONS

Although technological infrastructure transforms forest management, some limitations and challenges exist:
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6.1. Cost and Resource Constraints

UAVs, LiDAR, satellite imagery, and sensor networks can require high costs. The applicability of these
technologies is limited in small-scale and low-budget projects (Maxwell et al., 2018).

6.2. Data Management and Standardization

Standardizing and harmonizing data from different sources poses a technical challenge; however, planetary-
scale platforms like Google Earth Engine largely alleviate this problem (Gorelick et al., 2017).

6.3. Human Resources and Training

Qualified human resources are needed for the effective use of new technologies. Lack of training in GIS,
remote sensing, and artificial intelligence applications may limit the use of technological infrastructure
(Abad-Segura et al., 2022; Burleigh & Jonsson 2025).

6.4. Legal and Ethical Limitations

The use of drones, data sharing, and personal/environmental privacy are subject to legal regulations.
Additionally, ethical standards must be established for the use of technologies (Stone et al., 2016).

6.5. Digital Divide and Algorithmic Bias

Although technological progress is global, access is not equal. Forest management institutions in developing
countries risk falling behind these technologies due to high costs and lack of infrastructure. This 'digital
divide' could deepen global forest management inequalities. Furthermore, Al models may reflect biases in
the data they are trained on. For example, a model trained only on forest types from a specific geography
may fail to analyze a different ecosystem (Causevic et al., 2024).

6.6. Policy and Governance Deficiencies

The effective adoption and use of technological infrastructure requires clear policy frameworks and
governance mechanisms. There are legislative gaps in areas such as data sharing protocols, privacy
regulations, standards for UAV use, and cybersecurity measures. Additionally, collaborative governance
models that encourage data and technology sharing among different institutions (forest directorates,
environment ministries, research institutes) are needed. Without addressing these deficiencies, the potential
return on technological investments cannot be fully realized.

7. CONCLUSION AND FUTURE PERSPECTIVES

Technological infrastructure in forest ecosystem management offers revolutionary opportunities in data
collection, analysis, and decision support processes. Remote sensing, UAVs, LiDAR, GIS, sensor networks,
IoT, big data analytics, artificial intelligence, and digital twin applications play critical roles in monitoring
ecosystem changes, risk management, biodiversity tracking, and sustainable planning.

The review results demonstrate that:

Technological infrastructure enables the collection and analysis of high-resolution data over large
areas, increasing the accuracy of management decisions.

GIS and Al-supported decision support systems help balance ecosystem services with economic
outputs.

Drone and sensor-based monitoring systems allow early detection of risks such as fire, pest
organisms, and climate change.

However, factors such as cost, data standardization, lack of human resources, digital divide,
algorithmic bias, and legal/ethical limitations restrict the effective and equitable use of technological
infrastructure.
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Future Perspectives

* Digital Twin and Simulation Models: Digital twin systems fed with real-time data will enable
simulation of different management and climate scenarios and strengthen strategic planning (Buonocore et
al., 2022; Tagarakis et al., 2024).

* Integrated Sensor Networks and IoT: Establishing more widespread sensor networks in forest areas
will increase the effectiveness of early warning and automatic monitoring systems (Ali et al., 2025).

* Big Data, Al and Explainable Artificial Intelligence (XAI): Big data analytics and deep learning
algorithms will help develop more sensitive models of forest dynamics. XAl studies will increase trust by
providing transparency in decision-making processes ( Chinnaraju, 2025).

* Policy, Governance and International Cooperation: For effective implementation of technologies,
comprehensive policy frameworks including open data policies, harmonization of standards, and ethical
guiding principles should be developed in addition to trained human resources. International cooperation
focused on technology transfer and capacity building will play a key role in reducing the digital divide and
supporting sustainable forest management at the global scale (FAO, 2020).

» Citizen Science and Stakeholder Participation: Data collected by the public through smartphone
applications (e.g., tree disease reports) can support professional monitoring networks and democratize data
collection processes (Fraisl et al., 2022). This has the potential to strengthen the social acceptability of forest
management decisions by increasing public participation in management.

In conclusion, technological infrastructure not only increases operational efficiency in forest
management but also contributes to the creation of sustainable and resilient ecosystems. Future research
should focus on the integration of existing technologies, cost-effective strategies, XAl applications, policy-
governance models, and optimizing decision support processes.
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